博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
岭回归&Lasso回归
阅读量:6593 次
发布时间:2019-06-24

本文共 895 字,大约阅读时间需要 2 分钟。

转自:

  (这个也写的很好,只不过还没看)

1.最小二乘法则

假设我们有n个样本数据,每个数据有p个特征值,然后p个特征值是线性关系。

即对应的线性模型

写成矩阵的形式即是Y=XA,误差B矩阵:即B=Y-XA。【Y和A是列向量,X是矩阵】

误差的平方的计算公式

Xi为行向量,A为列向量。

最小二乘法的目标就是取得最小的e对应的A,由于方差的计算是一个二次函数,即抛物线,对应存在一个最小值,即导数为0对应的A。所以对e求A的偏导数,再使其等于0,求解方程即可以获得A。

误差的平方e写成矩阵形式即为

对矩阵E取迹(迹就是矩阵对角线上所有元素的累加)且对迹求导后结果为一个矩阵。

即为 

展开为  

求导化简结果为

注:这个计算的过程是涉及到向量的求导运算,看了好长时间实在是看不懂。也不知道这个结果是怎么计算出来的,暂且记住吧。。

参考:

当A的维数比Y的维数多,即样本数量n少于特征值p的时候存在多个解,可能导致结果很不稳定,所以要确保n>p。

X矩阵不存在广义逆(即奇异性)的情况:

1)X本身存在线性相关关系(即多重共线性),即非满秩矩阵。
当采样值误差造成本身线性相关的样本矩阵仍然可以求出逆阵时,此时的逆阵非常不稳定,所求的解也没有什么意义。
2)当变量比样本多,即p>n时.
这时,回归系数会变得很大,无法求解。在统计学上,可证明A的最小二乘解为无偏估计,即多次得到的采样值X而计算出来的多个系数估计值向量 的平均值将无限接近于真实值向量β。

2.岭回归

那么解决不存在矩阵广义逆:

在误差矩阵加上一个对A的L2范数控制系数矩阵,

 

而LASSO回归是加上的L1范数作为正则项。

反映到矩阵上,就是在原先的A的最小二乘估计中加一个小扰动λI,

变为满秩矩阵,可以求稳定的逆。

具体推导过程就不贴了,贴了也看不懂。 

3.LASSO回归

 

只是在于正则项的不同。

4.对于偏差与方差的理解

看到这个图觉得很不错:

偏差:预测出来的数据与真实值的差距

方差:预测出来的数据的分散程度

转载于:https://www.cnblogs.com/BlueBlueSea/p/10007175.html

你可能感兴趣的文章
开源人工智能技术将改变一切
查看>>
2015 上半年 JavaScript 使用统计数据
查看>>
《Python算法教程》——1.6 如果您感兴趣
查看>>
深度解析Java8 – AbstractQueuedSynchronizer的实现分析(下)
查看>>
SSH原理与运用(一):远程登录
查看>>
动态代理解决网站字符集编码
查看>>
后台统计
查看>>
React组件: 提取图片颜色
查看>>
3D应用开发中的欧拉角和旋转矩阵
查看>>
爬虫必备技能xpath的用法和实战
查看>>
RxJava2.0的初学者必备教程(九)
查看>>
记一次omi的项目之旅
查看>>
Android API级别、代号、发布时间及平台亮点整理
查看>>
LLDP(链路层发现协议)
查看>>
Ubuntu14 添加程序启动
查看>>
我的友情链接
查看>>
windows网络安全以及常见网络***方式
查看>>
警告 初始化默认驱动器时出错“找不到运行 Active Directory Web 服务的默认服务器。”...
查看>>
JS字符串转换数字
查看>>
centos7-修改主机名
查看>>